
Concrete cryptographic
security in F*

symmetric
encryption
(AES) .

crypto
primitives

public-key
encryption

(RSA)

Secure RPC

another
adversary

TLS 1.2

active adversaries

security
protocols

crypto
constructions

encrypt
then-MAC

hybrid
encryption

typed interfaces
(game-based security assumption)

typed interfaces
(attacker model)

some
attack

some
attack

some
adversary

crypto hash
(SHA3)

typed interfaces
(game-based security guarantees)

INT-CMA IND-CMA, CCA2

Auth. encryption IND-CMA, CCA2

secure channels

Security programming example:

Access Control Lists

Untrusted client code may call a trusted,
defensive library for accessing files

• Trusted code sets up security policy as a typed API

• Typechecking client code enforces policy compliance

• Untrusted code deals with dynamic checks and errors

- preconditions capture policy requirements

- postconditions enable re-use of dynamic checks

This plain interface
says nothing about
the security of MACs!

This ideal
interface
uses a log to
specify security

Great for F*
verification.

Unrealistic:
tags can be
guessed

Our ideal interface
reflects the security of a
chosen-message game
[Goldwasser’88]

The MAC scheme is
𝝐-UF-CMA-secure
against a class of probabilistic,
computationally bounded
attackers when the game
returns true with probability
at most 𝝐.

UF-CMA programmed in F*

protocol adversary
typed against
RPC interface

concrete system

RPC
protocol

Mac

sample protocol
typed against
ideal MAC interface

Ideal
filter

log-based error correction
making VERIFY returns
false on forgeries

Ideal MAC

Mac

Any p.p.t.
adversary

RPC
protocol

Any p.p.t.
adversary

real interfacereal interface

ideal system

secure RPC

concrete algorithm
assumed UF-CMA computationally

safe too,
with probability 𝟏 − 𝝐

perfectly safe
by typing

≈𝜖

U
F-

C
M

A

ad
ve

rs
ar

y

Security programming example

Authenticated RPC

Client
Service

request MAC

response MAC

Network adversary

Connecting to localhost:8080
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080
Received Request 2 + 2?
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes)
Received Response 4

cryptographic
primitives Formatting

format.fst

active
adversaries

security
protocols

typed interfaces
(security assumptions)

plain typed interfaces
(attacker model)

HMAC
mac.fst

INT-CMA

any typed
F* program

Authenticated RPC
rpc.fst

Bytes, Network
lib.fst

typed interfaces
(modular design)

system
libraries

adv.fst

application code

any typed
F* program

Another sample crypto assumption

Collision
Resistance

For authentication, we often require
hash algorithms to be “computationally injective”

∀ (𝑥 𝑦: bytes). 𝐻 𝑥 = 𝐻 𝑦 ⟹ 𝑥 = 𝑦

This is modelled by maintaining an inverse, monotonic
table from hash tags to hashed bytestrings

For authentication, we often require
hash algorithms to be “computationally injective”

∀ (𝑥 𝑦: bytes hashed so far). 𝐻 𝑥 = 𝐻 𝑦 ⟹ 𝑥 = 𝑦

This is modelled by maintaining an inverse, monotonic
table from hash tags to hashed bytestrings

Authenticated
Encryption

We rely on
type abstraction:

Ideal encryption
never accesses
the plaintext, is
info-theoretically
secure.

We program this game in F*
parameterized by a real
scheme AE and the flag b

We capture its security
using types to keep track of
the content of the log

Encrypt-then-MAC

active

adversaries

MAC
authentication

any typed

F* program

application code

any typed

F* protocol

Encrypt-then-MAC

Encrypt
secrecy

authenticated encryption

≈ IDEAL

IND-CPA ≈ IDEAL

UF-CMA

𝜖𝐶𝑃𝐴 + 𝜖𝑀𝐴𝐶

𝜖𝐶𝑃𝐴 𝜖𝑀𝐴𝐶

Plaintext
Ideal flags

Code follows the structure
of the construction & its proof

• For each functionality,
we have a separate module

• …and an interface
that captures its security

• Idealization is conditional,
controlled by flags whose values
are unknown at verification-time

• The top-level proof consists of
gradually setting flags for all
crypto assumptions

Encrypt-then-MAC

active

adversaries

EtM.MAC
authentication

any typed

F* program

application code

any typed

F* protocol

EtM.AE

EtM.CPA
secrecy

authenticated encryption

≈ IDEAL

IND-CPA ≈ IDEAL

UF-CMA

𝜖𝐶𝑃𝐴 + 𝜖𝑀𝐴𝐶

𝜖𝐶𝑃𝐴 𝜖𝑀𝐴𝐶

EtM.Plain
EtM.Ideal

Code follows the structure
of the construction & its proof

• For each functionality,
we have a separate module

• …and an interface
that captures its security

• Idealization is conditional,
controlled by flags whose values
are unknown at verification-time

• The top-level proof consists of
gradually setting flags for all
crypto assumptions

