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Security programming example: 

Access Control Lists



Untrusted client code may call a trusted, 
defensive library for accessing files

• Trusted code sets up security policy as a typed API

• Typechecking client code enforces policy compliance

• Untrusted code deals with dynamic checks and errors

- preconditions capture policy requirements

- postconditions enable re-use of dynamic checks



This plain interface 
says nothing about 
the security of MACs!



This ideal 
interface 
uses a log to 
specify security

Great for F* 
verification.

Unrealistic:
tags can be 
guessed



Our ideal interface 
reflects the security of a 
chosen-message game 
[Goldwasser’88]

The MAC scheme is 
𝝐-UF-CMA-secure 
against a class of probabilistic, 
computationally bounded 
attackers when the game
returns true with probability
at most 𝝐. 

UF-CMA programmed in F*



protocol adversary
typed against
RPC interface

concrete system

RPC
protocol

Mac

sample protocol
typed against
ideal MAC interface

Ideal
filter

log-based error correction
making VERIFY returns
false on forgeries

Ideal MAC

Mac

Any p.p.t. 
adversary

RPC
protocol

Any p.p.t. 
adversary

real interfacereal interface

ideal system

secure RPC

concrete algorithm
assumed UF-CMA computationally

safe too,  
with probability 𝟏 − 𝝐

perfectly safe
by typing

≈𝜖

U
F-

C
M

A
 

ad
ve

rs
ar

y





Security programming example 

Authenticated RPC



Client 
Service

request MAC

response MAC

Network adversary 





Connecting to localhost:8080
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080
Received Request 2 + 2?
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes)
Received Response 4
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Another sample crypto assumption

Collision
Resistance



For authentication, we often require
hash algorithms to be “computationally injective”

∀ (𝑥 𝑦: bytes). 𝐻 𝑥 = 𝐻 𝑦 ⟹ 𝑥 = 𝑦

This is modelled by maintaining an inverse, monotonic 
table from hash tags to hashed bytestrings



For authentication, we often require
hash algorithms to be “computationally injective”

∀ (𝑥 𝑦: bytes hashed so far). 𝐻 𝑥 = 𝐻 𝑦 ⟹ 𝑥 = 𝑦

This is modelled by maintaining an inverse, monotonic 
table from hash tags to hashed bytestrings



Authenticated
Encryption



We rely on 
type abstraction:

Ideal encryption 
never accesses 
the plaintext, is 
info-theoretically 
secure. 



We program this game in F* 
parameterized by a real 
scheme AE and the flag b

We capture its security
using types to keep track of 
the content of the log



Encrypt-then-MAC
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𝜖𝐶𝑃𝐴 + 𝜖𝑀𝐴𝐶

𝜖𝐶𝑃𝐴 𝜖𝑀𝐴𝐶

Plaintext
Ideal flags

Code follows the structure
of the construction & its proof

• For each functionality,
we have a separate module

• …and an interface 
that captures its security

• Idealization is conditional,
controlled by flags whose values
are unknown at verification-time

• The top-level proof consists of 
gradually setting flags for all
crypto assumptions
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