Concrete cryptographic
security In F* -

7
-
.“‘%ﬂ A{

Modular Code-Based Crypto Verification

crypto hash symmetric public-key crypto
(SHA3) encryption encryption .
rimitives
(AES) (RSA) P
IND-CMA, CCA2 ¢

typed interfaces
(game-based security assumption)

encrypt hybrid
then-MAC encryption crypto

Auth. encryption IND-CMA, CCA2 constructions

/ typed interfaces

\ (game-based security guarantees)
Secure RPC TLS 1.2 security
protocols
secure channels

typed interfaces
(attacker model)

some _ .
adversary another active adversaries
adversary

Security programming example:

Access Control Lists
A

=

=
i’?‘/\l\ A

&)

-Xample: access control for i

Untrusted client code may call a trusted,
defensive library for accessing files

» Trusted code sets up security policy as a typed API

» Typechecking client code enforces policy compliance

 Untrusted code deals with dynamic checks and errors
- preconditions capture policy requirements
- postconditions enable re-use of dynamic checks

€S

Cryptographic Integrity:
Message Authentication Codes (MAC)

module HMAC SHA256 (* plain *)

This plain interface
Gl says nothing about

type msg = bytes .
A = eyt 22 the security of MACs!

val keygen: unit —» St key
val mac: key - msg - tag
val verify: key -» msg —» tag — bool

Cryptographic Integrity: UF-CMA security (1/3)

module HMAC SHA256

type key

type msg = bytes

type tag = lbytes 32

val log: mem - key —» seq (msg X tag) (* ghost *)

val keygen: unit —» ST key

(ensures A hg k hq = log hq k = empty)

val mac: k:key -» m:msg - ST tag
(ensures A hgthy = log hy k=1log hg k ++ m ~ t)

val verify: k:key - m:msg - t:tag — bool
(ensures A hg b h1 = b = mem (log hg k) (M ~ t))

This ideal
interface

uses a log to
specity security

Great for F*
verification.

Unrealistic:
tags can be
guessed

Cryptographic Integrity: UF-CMA security (2/3)

Our ideal interface

. UF-CMA programmed in F*
reflects the security of a —

let game attacker =

chosen-message game let k = MAC.keygen() in
[Goldvvasser’88] let log = ref empty in

_ let oracle msg =
The MAC scheme is log = !log ++ msQ;
e-UF-CMA-secure MAC.mac k msg in

against a class of probabilistic,
computationally bounded
attackers when the game

let msq, forgery = attacker oracle in

. N MAC.verify k msg forgery &&
returns true with probability not (Seq.mem msg 'log)

at most €.

Cryptographic Integrity: UF-CMA security (3/3)

UF-CMA

y

\

adversar

—

ideal system

Mac
real interfacé_‘\l

Ideal
filter

Ideal MAC NS

RPC
protocol ¢

secure RPC

Any p.p.t.
adversary

perfectly safe

by typing

concrete system

Mac

real interface

RPC
protocol

Any p.p.t.
adversary

safe too,

concrete algorithm
assumed UF-CMA computationally

log-based error correction
making VERIFY returns
false on forgeries

sample protocol
typed against
ideal MAC interface

protocol adversary
typed against
RPC interface

with probability 1 — €

Cryptographic Integrity: Two styles tor ideal MACs

module MAC (* stateful *)

module MAC (* logical *)

type key
val log: mem - key —» Seq msg

type property: msg —» Type
type key (p:prop)

val keygen:
unit = ST key
(ensures A hg khy =

log h1 k = empty)

val keygen:
#p:property — St (key p)

val mac:
#p: property - key p -
m:msg {p m} — St tag

val mac:
k:key - m:msg — ST tag
(ensures A hgthy -

log hy k =log hg k ++ m)

val verify:
#p:property -» key p -» m:msg - tag -
St (b:bool {b = p m}

val verify:
k:key - m:msg - t:tag —» ST bool
(ensures A hg b hy -

b = mem (log hg k) m)

(* proof idea: maintain a private stateful log: *)

type log (p:property) =
mref (seq (m:msg {p})) grows

Security programming example

Authenticated RPC

A

=

=
i’?‘/\l\ A

Authenticated RPC

l.a—b: uwtf8s | (hmacshal kyy, (request s))

2. b—a: utf8t | (hmacshal kyy, (response st))

request

MAC

response

MAC

Client

Network adversary

Service

Authenticated RPC: Informal Description

l.a—b: uwtf8s | (hmacshal kyy, (request s))
2. b—a: utf8t | (hmacshal kyy, (response st))

We design and implement authenticated RPCs over a TCP connection.
We have two roles, client and server, and a population of principals,a b c ...

Our security goals:

e if b accepts a request s from a,
then a has indeed sent this request to b;

e if a accepts a response ¢ from b,
then b has indeed sent ¢ in response to a’s request.

We use message authentication codes (MACs) computed as keyed hashes,
such that each symmetric key k, is associated with
(and known to) the pair of principals a and b.

There are multiple concurrent RPCs between any number of principals.
The adversary controls the network. Keys and principals may get compromised.

Authenticated RPC: Test

l.a—b: uwtf8s | (hmacshal kyy, (request s))
2. b—a: utf8t | (hmacshal kyy, (response st))

Connecting to localhost:8080

Sending {BgAyICsgMj9mhJa7iDAcwW3Rrk...} (28 bytes)
Listening at ::1:8080

Received Request 2 + 27

Sending {AQAONccjcuL/woaYSOGGtOotPm...} (23 bytes)
Received Response 4

Authenticated RPC: Is this Protocol Secure?

l.a—b: uwtf8s | (hmacshal kyy, (request s))
2. b—a: utf8t | (hmacshal kyy, (response st))

Security depends on the following:

(1) The function hmacshal is cryptographically secure,
so that MACs cannot be forged without knowing their key.

(2) The principals a and b are not compromised,
otherwise the adversary may just use k,p, to form MACs.

(3) The functions request and response are injective and their ranges are disjoint;
otherwise the adversary may use intercepted MACs for other messages.

(4) The key k,p, 1s a key shared between a and b,
used only for MACing requests from a to b and responses from b to a;
otherwise, if b also uses k,;, for authenticating requests from b to a,
it would accept its own reflected messages as valid requests from a.

Modular verification
for sample protocol

lib.fst

Bytes, Network system

libraries

=

cryptographic HMAC security
primitives mac.fst Formatting protocols
format.fst £
A ?
typed interfaces \ ’

(security assumptions)

Authenticated RPC

rpc.fst

plain typed interfaces

(attacker model)

active
adversaries

typed interfaces
(modular design)

application code

Another sample crypto assumption

Collision

. y .
Res|stance

=

i
.%/m A

Hash Functions & Collision Resistance

For authentication, we often require
hash algorithms to be “‘computationally injective”

V (xy:bytes).H(x) =H(y) > x =y

This is modelled by maintaining an inverse, monotonic
table from hash tags to hashed bytestrings

Hash Functions & Collision Resistance

For authentication, we often require
hash algorithms to be “‘computationally injective”

V (x y:bytes hashed sofar). H(x) = H(y) > x =y

This is modelled by maintaining an inverse, monotonic
table from hash tags to hashed bytestrings

Authenticated
cNCryption -~

=

=
i’?‘/\l A{

Cryptographic Confidentiality
Indistinguishability under Chosen-Plaintext Attacks

module Plain

We rely on

abstract type plain = bytes type abStraCtiOﬂ:

val repr: p:plain{— ideal} — Tot bytes :
val coerce: r:bytes{— ideal} — Tot plain deal eﬂcryptlon

Never aCcCesses

letreprp=p , .
let coerce r = the plaintext, is

val length: plain - Tot N .ﬂfO‘theOretica”y

let length p = length p secyre

Authenticated Encryption:

Game-based security
assumption

Game Ae(A, AE)
b < {0,1}; L« @; k & AE.keygen()
b/ . AEncrypt,DecryptO; return (b ; b/)

Oracle Encrypt(p) Oracle Decrypt(c)

if b then ¢ & bytee; Lc] + p if b then p < L]

else c < AE.encrypt k p else p < AE.decrypt k ¢
return c return p

Definition 1 (AE-security): Given AE, let epae(Alqe, q4])
be the advantage of an adversary .4 that makes ¢. queries
to Encrypt and ¢, queries to Decrypt in the Ae”(AE) game.

We program this game in F*
parameterized by a real
scheme AE and the flag b

€ AE.Ideal fst -
File Edit Options Buffers Tools FS Help

module AE.Game

let encrypt (k:key, p: plaintext) =
if b then
let ¢ = randomBytes (length p) in
k.log == k.log ++ (c ~ p);
C
else
AE.encrypt k.real p

let decrypt (k:key, c: ciphertext) =
if b then
Map.lookup 'k.log ¢
else
AE.decrypt k.real c ||

- AE.ldeal.fst Top L15

We capture its security
using types to keep track of
the content of the log

ENC prt-th en-MAC In F* laintext \deal flags

€cpa c
Encrypt MAC
secrecy MAC ‘
Code follows the structure ~ IDEAL authentication
of the construction & its proof ~ IDEAL

« For each functionality,
we have a separate module

 ..and an interface
that captures its security

« |dealization is conditional,
controlled by flags whose values
are unknown at verification-time

« The top-level proof consists of
gradually setting flags for all
crypto assumptions

any typed
F* protocol

application code

Encrypt-then-MAC in F*) R ey

€cprA
EtM.CPA

secrecy

Code follows the structure ~ IDEAL authentication
of the construction & its proof ~ IDEAL
« For each functionality,
we have a separate module

 ..and an interface
that captures its security

« |dealization is conditional,
controlled by flags whose values
are unknown at verification-time

« The top-level proof consists of
gradually setting flags for all
crypto assumptions

EmAc
EtM.MAC

any typed
F* protocol

application code

